
Repeated Games, Optimal Channel Capture, and
Open Problems for Slotted Multiple Access

Michael J. Neely
University of Southern California

https://viterbi-web.usc.edu/~mjneely/

58th Allerton Conference on Communication, Control, and
Computing, Sep. 28, 2022

https://viterbi-web.usc.edu/~mjneely/


Outline

1. MAC Game Competition (7 semesters at USC)

I Winning algorithm

I To be (Greedy) or Not To Be (Greedy)?

2. Minimizing expected time to capture a channel:

I Exponentially growing decision space

I Novel optimality proof for 2, 3, 4, 6 users



Part 1: EE 550 MAC Game Competition

I Two users compete for a channel

I Packet transmission = 1 slot

I Compete over 100 slots

I Binary decision on each slot: Transmit (1) or not (0)?

I Idle/Success/Collision

I Students submit algorithms in Matlab:
(Base decision at time t on history of prior decisions of
yourself and your opponent. Can use randomness)



Example 100 slot Game

ALG 1 ALG 2

1

2

3

100

? ?

RESULT



Example 100 slot Game

ALG 1 ALG 2

1

2

3

100

1 1

RESULT



Example 100 slot Game

ALG 1 ALG 2

1

2

3

100

1 1 Collision

RESULT



Example 100 slot Game

ALG 1 ALG 2

1

2

3

100

1 1 Collision

RESULT

? ?



Example 100 slot Game

ALG 1 ALG 2

1

2

3

100

1 1 Collision

RESULT

0 0



Example 100 slot Game

ALG 1 ALG 2

1

2

3

100

1 1 Collision

RESULT

0 0 Idle



Example 100 slot Game

ALG 1 ALG 2

1

2

3

100

1 1 Collision

RESULT

0 0 Idle

? ?



Example 100 slot Game

ALG 1 ALG 2

1

2

3

100

1 1 Collision

RESULT

0 0 Idle

1 0



Example 100 slot Game

ALG 1 ALG 2

1

2

3

100

1 1 Collision

RESULT

0 0 Idle

1 0 ALG 1 gets 1 point



Competition rules

1. All n algorithm pairs compete over 100 slot games

2. Goal: Get highest sum score over all games you play

3. The algorithms you compete against include:
I All student-designed algs (including yourself)
I NeverTransmit
I AlwaysTransmit
I 4-state

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 Totals
A1 0 0 0 0 0 0 0 0 0 0 0
A2 100 0 1 0 48.89 0 19.99 10.72 0 50.03 230.6444
A3 98.03 0 49.49 0 49.41 49.33 21.61 24.9 0 33.27 326.0706
A4 39.94 0 1 0 20.46 0 20.06 10.69 0 36.27 128.4562
A5 49.95 0 0.49 0 25.04 0 9.98 5.33 0 24.88 115.6895
A6 1 0 49.67 0 0.5 0 19.05 31.93 0 25.26 127.4265
A7 100 0 19.12 0.54 49.98 18.81 16.45 19.21 0.56 34.46 259.1658
A8 50.52 0 23.85 0.02 25.34 31.57 18.65 24.74 0.19 27.37 202.2952
A9 100 0 1 0 49.97 0 19.88 10.76 0 38.18 219.8058
A10 50.01 0 16.68 13.75 25.15 24.76 15.61 22.73 11.81 24.98 205.5207



Figures of merit for an algorithm

I SelfCompetition score α: What is your expected score when
playing an independent version of yourself?

I NoCompetition score β: What is your expected score when
playing NeverTransmit?

I HumanCompetition score γ: Simulated over 135 algs

Def: A deterministic algorithm uses no rand() calls.

Lemma: Every deterministic algorithm has α = 0.



Some baseline algs

I AlwaysTransmit

I Tit-for-tat-1:
1. Slot 1: X [1] = 1
2. Slot t ∈ {2, ..., 100}: X [t] = Xopponent [t − 1]

I Tit-for-tat-0:
Same as Tit-for-tat-1 except X [1] = 0.

I 4-state

I 4-state with greedy ending



4-state Alg

State 1: Independently transmit with prob ½ 
until either I score or the opponent scores.

State 2: Politely remain idle 
for one slot.

State 3: Transmit repeatedly 
until I score.

If opponent scores firstIf I score first

If opponent transmits

State 4: Transmit repeatedly
until collision.

If opponent
is idle



Results of competition

4-State Second Place AlwaysTransmit AvgAlg

Fall 2021 (10 algs) 32.46 26.02 22.90 18.14
Fall 2020 (25 algs) 23.92 22.82 12.36 12.10
Fall 2019 (19 algs) 30.55 30.07 18.32 16.25

Spring 2018 (35 algs) 56.31 53.62 25.55 33.71
Fall 2018 (27 algs) 32.44 29.63 15.42 17.11

Spring 2017 (21 algs) 20.44 17.68 8.00 10.88
Fall 2016 (14 algs) 20.22 17.53 11.22 10.22

SelfComp α NoComp β Tournament γ

4-state 49.500 98.000 24.613

Tit-for-tat-0 0 0 20.410

Tit-for-tat-1 0 1 15.326

AlwaysTransmit 0 100 10.714

I Scores are presented as average score per (100-slot) game.

I 4-state came in 1st place every semester

I AvgAlg is the average score over all algs that semester.



Theorem: 4-state gives optimal SelfCompetition score

Theorem:

a) The SelfCompetition score for 4-state is

α =
T − 1

2
+

(
1

2

)T+1

T = 100 =⇒ α ≈ 49.500000000000000000000000000000394

b) (Converse): No algorithm that competes against an
independent copy of itself can do better.



Part 2: Expected time to capture channel

1. n users; slotted time

2. Everyone knows there are n

3. Users are indistinguishable (labels {1, 2, ..., n} unknown)

4. Design an alg that is independently used by each user to
minimize the expected time until the first success



Related work

I Distributed control

1. Witsenhausen 1973, 1987
Proof for n = 3 agents; n > 3 open

2. Nayyar and Teneketzis 2019
Common Information

I Regret-based and online convex opt

1. Bubeck and Budzinski 2020
2. Bubeck, Li, Peres, Sellke 2020
3. Kalathil, Nayyar, Jain 2014

I Distributed MAC, Poisson arrivals, Splitting and Tree Algs

1. Bertsekas and Gallager 1992
2. Mosely and Humblet 1985
3. Tsybakov and Mikhailov 1978, 1980, 1981
4. Hayes 1978
5. Capetanakis 1979



Collision feedback F [t]

At end of each slot t, all users receive feedback:

F [t] = Number of users who transmitted

I F [t] = 0 (Idle)

I F [t] = 1 (Success and done)

I F [t] = 2 (Collision of 2 users)

I F [t] = 3 (Collision of 3 users)

...

I F [t] = n (Collision of n users)

We can know F [t] by, for example,

1. Measuring energy in collision

2. Using bit signature and counting spikes in matched filter
[Gollakota and Katabi ZigZag 2008, SigSag]



Proposed Alg for n = 2

Both users independently transmit with prob 1/2 every slot
until first success.

I Z = random time to first success.

I z2 = E [Z ]

I z2 = 2



Proposed Alg for n = 3

Transmit with prob p and observe F [t]:

I F [t] = 0:

I F [t] = 1:

I F [t] = 2:

I F [t] = 3:



Proposed Alg for n = 3

Transmit with prob p and observe F [t]:

I F [t] = 0: Repeat

I F [t] = 1:

I F [t] = 2:

I F [t] = 3: Repeat



Proposed Alg for n = 3

Transmit with prob p and observe F [t]:

I F [t] = 0: Repeat

I F [t] = 1: Success! (Done)

I F [t] = 2:

I F [t] = 3: Repeat



Proposed Alg for n = 3

Transmit with prob p and observe F [t]:

I F [t] = 0: Repeat

I F [t] = 1: Success! (Done)

I F [t] = 2: groups {ã, b̃}, {c̃} =⇒ Done in 1

I F [t] = 3: Repeat



Result for n = 3

I Get:

E [Z ] =
1 + 3p2(1− p)

1− p3 − (1− p)3

I Now optimize p:

z3 = inf
p∈(0,1)

{
1 + 3p2(1− p)

1− p3 − (1− p)3

}

=⇒ p∗ = 0.411972

z3 = 1.78795



Proposed Alg for general n

Transmit with prob p and observe F [t]:

I F [t] = 0: Repeat

I F [t] = 1: Done in 1

I F [t] = k ∈ {2, ..., n − 2}:

Choose better of groups: {k users}, {n − k users}

I F [t] = n − 1: Done in 2

I F [t] = n: Repeat

zn = inf
p∈(0,1)

{
1 +

∑n−1
i=2 min{zi , zn−i}

(
n
i

)
pi (1− p)n−i

1− pn − (1− p)n

}

Conjecture: This algorithm is optimal for all n ∈ {1, 2, 3, ...}
Have proof for special cases n ∈ {1, 2, 3, 4, 6}



Proof of converse for n = 4

I Consider any algorithm independently used by 4 users

I Let Z be random time to first success of this algorithm

I Want to show E [Z ] ≥ z4

I Idea: Consider new system with 2 virtual users with
enhanced capabilities!
(Can each send any number of packets per slot)

I Show virtual system has E [Zvirtual ] ≥ z4

I Show virtual system can emulate actual system
(so E [Z ] ≥ E [Zvirtual ])



Conclusions

1. MAC Game
I Sharing is good. Greedy is bad.
I Randomness is required
I 4-state consistently wins competitions

(and maximizes self-score α)

2. Time to first capture
I Complexity explosion in information state (and group state)
I Interesting heuristic for all n
I Optimality for n ∈ {1, 2, 3, 4, 6}

(Novel method of virtual users with enhanced capabilities)

3. Open problems
I n = 5 ; n ≥ 7
I Limited forms of feedback
I Multiple channels



Related NSF projects

1. NSF SpecEES 1824418
I M. J. Neely, “Repeated Games, Optimal Channel Capture, and Open

Problems for Slotted Multiple Access,” arXiv technical report,
arXiv:2110.09638v1.

I X. Zhou, I. Koprulu, A. Eryilmaz, M. J. Neely, “Low-Overhead Distributed
MAC for Serving Dynamic Users over Multiple Channels,” Proc. WiOpt
2021.

I M. J. Neely, “Reversible Models for Wireless Multi-Channel Multiple

Access,” Proc. IEEE INFOCOM, 2021.

2. NSF CCF-1718477
I M. J. Neely, “Fast Learning for Renewal Optimization in Online Task

Scheduling,” Journal of Machine Learning Research (JMLR) Sept. 2021.
I M. J. Neely, “A Converse Result on Convergence Time for Opportunistic

Wireless Scheduling,” Proc. IEEE INFOCOM 2020.

I K. Asgari and M. J. Neely, “Bregman-style Online Convex Optimization

with Energy Harvesting Constraints,” Proc. ACM Meas. Anal. Comput.

Syst, Dec. 2020.



Proof of converse for n = 4

I Consider any algorithm independently implemented by 4
users

I Let Z be random time to first success

I First slot: Transmit with some prob p and observe F [1]:

E [Z | F [1] = 0] ≥ 1 + z∗4

E [Z | F [1] = 1] = 1

E [Z | F [1] = 2] ≥?? [Hard case: Groups {a, b}, {c , d}]
E [Z | F [1] = 3] ≥ 2

E [Z | F [1] = 4] ≥ 1 + z∗4



Proof idea: Emulation on a virtual system

I Pesky case of {a, b}, {c , d}.

I Want to bound expected remaining time under any algorithm
for this pesky case:

E [R] ≥ 2

I Consider new system with 2 virtual users with enhanced
capabilities: Each user can send any integer number of
packets per slot!

I Show virtual system has E [Rvirtual ] ≥ 2

I Show virtual system can emulate the {a, b}, {c , d} case.



Why the problem is hard

I Indistinguishable users {1, 2, ..., n}.

I Feedback eventually lets us discern two groups:

{k users}, {n − k users}

I Should we throw one group away, or have first group transmit
with prob p1 and second with prob p2?

I Exponentially growing (distributed) information state:

1. User 1 history: {001101...}
2. User 2 history: {110010...}
3. User 3 history: {111001...}
4. User 4 history: {111010...}



Matlab details

I Master Program:

for t ∈ {1, . . . , 100}:
1. X1 = Player1DecisionAlg(t,Hist1[t],Hist2[t]);
2. X2 = Player2DecisionAlg(t,Hist2[t],Hist1[t]);
3. Update scores;
4. Update history:

Hist1[t] = [Hist1[t];X1];

Hist2[t] = [Hist2[t];X2];

I Player subroutine:

X = MyDecisionAlg(t,MyHistory [t],OpponentHistory [t]);


